Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW)

نویسندگان

  • Yannapol Sriphutkiat
  • Yufeng Zhou
چکیده

Accumulation of particles in a high concentration on a microchannel wall is a common phenomenon in a colloidal fluid. Gradual accumulation/deposition of particles can eventually obstruct the fluid flow and lead to clogging, which seriously affects the accuracy and reliability of nozzle-based printing and causes damage to the nozzle. Particle accumulation in a 100 μm microchannel was investigated by light microscopy, and its area growth in an exponential format was used to quantify this phenomenon. The effects of the constriction angle and alginate concentration on particle accumulation were also studied. In order to reduce the clogging problem, an acoustic method was proposed and evaluated here. Numerical simulation was first conducted to predict the acoustic radiation force on the particles in the fluid with different viscosities. Interdigital transducers (IDTs) were fabricated on the LiNbO₃ wafer to produce standing surface acoustic waves (SSAW) in the microchannel. It was found that the actuation of SSAW can reduce the accumulation area in the microchannel by 2 to 3.7-fold. In summary, the particle accumulation becomes significant with the increase of the constriction angle and fluid viscosity. The SSAW can effectively reduce the particle accumulation and postpone clogging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).

This work introduces a method of continuous particle separation through standing surface acoustic wave (SSAW)-induced acoustophoresis in a microfluidic channel. Using this SSAW-based method, particles in a continuous laminar flow can be separated based on their volume, density and compressibility. In this work, a mixture of particles of equal density but dissimilar volumes was injected into a m...

متن کامل

Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bon...

متن کامل

Separation of Escherichia coli Bacteria from Peripheral Blood Mononuclear Cells Using Standing Surface Acoustic Waves

A microfluidic device was developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. In this device, two identical surface acoustic waves (SAWs) generated by interdigital transducers (IDTs) propagated toward a microchannel, which accordingly built up a standing surface acoustic wave (SSAW) field across the channel. A numerical model, coupling a pie...

متن کامل

The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation

The separation of blood components (WBCs, RBCs, and platelets) is important for medical applications. Recently, standing surface acoustic wave (SSAW) microfluidic devices are used for the separation of particles. In this paper, the design analysis of SSAW microfluidics is presented. Also, the analysis of SSAW force with Rayleigh angle effect and its attenuation in liquid-loaded substrate, visco...

متن کامل

Experimental and numerical studies on standing surface acoustic wave microfluidics.

Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017